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Surface-wave generation by gusty wind
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Nikolayeva & Tsimring’s (1986) collisionless Boltzmann model for surface-wave
generation by a slowly fluctuating wind U(z, t) is transformed to an equivalent steady
flow in which the wind speed in the reference frame of the wave (of speed c) is given
by V(z)¯©(U®c)−#ª−"/#, where © ª signifies a Gaussian average. This leads to a
Sturm–Liouville equation for the Gaussian-averaged, complex amplitude of the wave-
induced pressure. The wind-to-wave energy transfer for a logarithmic wind profile with
the mean friction velocity κU{

"
(κ¯Ka! rma! n’s constant), the standard deviation δU{

"
,

and the roughness length z
!
¯ΩU{ #

"
}g is determined as a function of the parameters δ

and Ω (Charnock’s constant) through numerical integration of a Riccati equation
(derived from the Sturm–Liouville equation). The energy transfer exceeds that
predicted by the quasi-laminar model (Miles 1957; Conte & Miles 1959) by as much
as 20–30% for δE 1 and c (wave speed)# 6U{

"
but is decreased for c$ 8U{

"
and may

be negative for sufficiently large c}U{
"
. These predictions contrast with the order-of-

magnitude increase predicted by Nikolayeva & Tsimring.

1. Introduction

The quasi-laminar model for the transfer of energy from wind to surface waves
(Miles 1957, hereinafter referred to as M57) is based on the Reynolds-averaged Euler
equations and the implicit assumption that the characteristic period of the waves is
long compared with that of the turbulent fluctuations. In fact, the time constants of
wind gustiness may be large compared with those of wind-generated gravity waves, and
the averaging of the Euler equations therefore should allow for a slowly and randomly
varying wind. Different models for this accommodation have been proposed by
Janssen (1986) and Nikolayeva & Tsimring (1986, hereinafter referred to as NT).

Janssen assumes the friction velocity Uk for a logarithmic wind profile to be random
with the temporal mean U{ k and the standard deviation σk. He then calculates the
mean growth rate according to

ζa(U{ k,σk)¯&¢

−¢

G(Uk ;U{ k,σk) ζ(Uk) dUk3©ζ(Uk)ª, (1.1)

where G(U ;U{ ,σ)¯ (2π)−"/#σ−" exp [®"

#
(U®U{ )#}σ#] (1.2)

is a Gaussian distribution function, ζ(Uk) is the growth rate for a steady wind of
friction velocity Uk, and © ª signifies a Gaussian average. (Note that ©Uª3U{ .) The
integral in (1.1) may be approximated through Gauss–Hermite quadrature (Miles
1997).

Nikolayeva & Tsimring construct a more sophisticated model by analogy with the
collisionless Boltzmann equation for the one-point distribution function f(�, r, t) of the
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fluctuating velocity � at the space–time point (r, t) (Lundgren 1967). This leads them to
a counterpart of the Rayleigh equation that governs the quasi-laminar model.
However, whereas Rayleigh’s equation is singular at U¯ c (the critical layer, in which
the wind-to-wave energy transfer is concentrated), this singularity is smoothed out in
NT’s model by the fluctuation of U. They conclude, from numerical integration of their
equation, that gustiness may increase the wind-to-wave energy transfer, relative to that
predicted by the quasi-laminar model, by one or two orders of magnitude. This is a
matter of some practical importance in that an empirically modified version of the
quasi-laminar model has been adopted as a basic component of the WAM model
(Komen et al. 1994) for wind-wave prediction.

Against this background, and following M57 and NT, we consider here an
incompressible, inviscid flow U(z, t)®c over the gravity wave

z¯ a coskx (ka' 1), (1.3)

where x and z are horizontal and vertical Cartesian coordinates in a reference frame
moving in the x-direction with the wave speed

c¯ (g}k)"/#. (1.4)

U¯U(z, t) is a slowly fluctuating wind speed with the temporal mean U{ (z), the
standard deviation σ(z) and the Gaussian distribution (1.2) and (by assumption)
satisfies

r¥U}¥tr'kcrU r, U(0, t)¯ 0. (1.5a, b)

The basic formulation in §§2–4 is valid for any prescribed U that satisfies this
description; however, (following M57 and NT) we assume a logarithmic profile for
which

U{ (z)¯U{
"
log (z}z

!
) (z( z

!
), σ}U{

"
¯ constant3 δ, U{ (z

c
)¯ c, (1.6a–c)

T
!
3kz

!
'kz

c
3 T

c
¯Ωe=}=#, =3 c}U{

"
, Ω3 gz

!
}U{ #

"
, (1.7a–c)

where Ω is Charnock’s (1955) constant.
In §2, we consider two-dimensional perturbations about the flow U(z, t)† on the

assumption of slowly and randomly modulated sinusoidal wave motion, transform
NT’s collisionless Boltzmann model to an equivalent steady flow with the equivalent
wind speed (in the reference frame of the wave)

V(z)3©(U®c)−#ª−"/#, (1.8)

where © ª is a Gaussian mean defined as in (1.1), and construct a Sturm–Liouville
equation for the Gaussian mean of the complex amplitude of the perturbation
pressure. In §3, we express V in terms of Dawson’s integral.

In §4, we determine the inertial and energy-transfer parameters α and β defined by
(as in M57)

P
!
3 (α­iβ)kaU{ #

"
, (1.9)

where P
!
is the Gaussian mean of the complex amplitude of the kinematic perturbation

† The assumption, implicit in §2, that the fluctuation of the wind is parallel to the mean wind is
unrealistic. A model that allows for x- and y-components of the fluctuating wind and oblique
propagation of the surface wave yields a description that differs from that of §2 only in the
replacement of U{ by U{ cos θ, where θ is the angle between the wave number k and the mean wind U{ .
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F 1. The inertial parameter α, as determined by the numerical integration of the Riccati
equation (4.2) for the mean wind profile (1.6) with Ω¯ 0.003 and δ¯ 0+ (——), 0±4 ([[[[), 0.8
(– – –), 1.2 (–[–).
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F 2. The energy-transfer parameter β, as determined by the numerical integration of the Riccati
equation (4.2) for the mean wind profile (1.6) with Ω¯ 0.003 and δ¯ 0+ (——), 0.4 ([[[[), 0.8
(– – –), 1.2 (–[–).

pressure at the interface, through the numerical integration of a Riccati equation
derived from the Sturm–Liouville equation for P ; see figures 1 and 2. The
dimensionless, wind-to-wave-energy-transfer rate is given by

(kcE{ )−"(¥E}¥t)¯ (ρ
a
}ρ

w
) (U{

"
}c)#β, (1.10)
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where E{ is the mean energy of the wave and ρ
a
}ρ

w
is the air}water density ratio. We

find that gustiness may increase β for moderate c}U
"

but (in contrast to NT’s
prediction) decreases it, and may render it negative, for sufficiently large c}U

"
.

2. Perturbation equations

2.1. NT ’s model

We pose the velocity and the perturbation pressure in the forms

�¯ [U(z, t)®c, 0]­Re ²[u
"
(z, t),w

"
(z, t)] eikx´, (2.1a)

p¯Re ²p
"
(z, t) eikx´, (2.1b)

where p
"
, u

"
and w

"
are slowly fluctuating, complex amplitudes. NT’s collisionless

Boltzmann model yields the perturbation equations [their (8)]

ik©w
"
ª¯®Aρ−"

a
D©p

"
ª (D3d}dz), (2.2a)

ik©u
"
ª­(A−"DA®B−"DB)©w

"
ª¯®ikAρ−"

a
©p

"
ª, (2.2b)

ik©u
"
ª­D©w

"
ª¯ 0, (2.2c)

after the replacement of their carrier exp(®ikx) by the present exp(ikx), their Gaussian
means pa

a"
, ua

a"
, wk

a"
by ©p

"
ª, ©u

"
ª, ©w

"
ª, and their ®ka and ®kb by

A3©(U®c)−"ª, B3©(U®c)−#ª¯ ¥A}¥c. (2.3a, b)

The elimination of ©p
"
ª and ©u

"
ª from (2.2) yields [NT’s (9)]

AD[B−"D(A−"B©w
"
ª)]®k#©w

"
ª¯ 0. (2.4)

2.2. Equi�alent steady flow

Let
©p

"
ª¯ ρ

a
P, ©u

"
ª¯AVUq ®(ik)−"(DAV )W, ©w

"
ª¯AVW, (2.5a–c)

where V¯B−"/#, as anticipated in (1.8), and the hat distinguishes the dependent
variable Uq from the basic wind speed U. Transforming (2.2), we obtain

ikVW¯®DP, ikVUq ­(DV )W¯®ikP, ikUq ­DW¯ 0, (2.6a–c)

which describe an equivalent steady flow in which Uq , W and P are the complex
amplitudes of the perturbation velocity and kinematic pressure. Eliminating Uq and
either P or W from (2.6), we obtain either the Rayleigh equation [cf. (2.4)]

D#W®(k#­V−"D#V)W¯ 0, (2.7)

for which the interfacial (tangential flow) and null conditions are

W¯®ikac (z¯ 0), WU 0 (kz #¢), (2.8a, b)

or the Sturm–Liouville equation

D(BDP)®k#BP¯ 0, (2.9)

for which the boundary conditions are

BDP¯k#a (z¯ 0), PU 0 (kz #¢). (2.10a, b)
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3. Analytical representation of A and B

Returning to (2.3), recalling G from (1.2), introducing

ξ¯ (U®U{ )}o2σ, ν¯ (U{ ®c)}o2σ, (3.1a, b)

and assuming that σ is constant (which requires z( z
!
), we obtain

A(ν)3©(U®c)−"ª¯&¢

−¢

G(U ;U{ ,σ) (U®c)−"dU (3.2a)

¯ (2π)−"/#σ−"&¢

−¢

(ξ­ν)−" e−ξ# dξ (3.2b)

¯ 2"/#σ−"[D(ν)­"

#
iπ"/# e−ν#], (3.2c)

B(ν)¯ ¥A}¥c¯σ−#[®(dD}dν)­iπ"/#ν e−ν#], (3.3)

where D(ν) is Dawson’s integral (Spanier & Oldham 1987, §42).

4. Riccati formulation

We find it expedient for numerical integration to introduce

R(T)3kQ(DP)−"P, T3kz, Q3 (U{ #
"
B)−" (4.1a–c)

and transform (2.9) to the Riccati equation

dR}dT¯Q®Q−"R#. (4.2)

Invoking (1.9), (2.10a) and (4.1a) and projecting the inner boundary condition on
T¯ T

!
to satisfy U{ ¯ 0, we obtain

α­iβ¯P
!
}kaU{ #

"
¯R

!
(T¯ T

!
). (4.3)

The null condition (2.10b) requires DPC®kP, or, through (4.1a),

RC®Q (T #¢). (4.4)

The numerical integration of (4.2), subject to (4.4), may be started from the
asymptotic expansion

R¯ 3
¢

n=!

T−nF
n
(λ), λ¯ (U{ ®c)}U{

"
¯ ln(T}T

c
), (4.5a, b)

where F
!
¯®Q, F

"
¯ "

#
(dF

!
}dλ), (4.6a, b)

2F
n+"

¯ 0 d

dλ
®n1F

n
­Q−" 3

n

m="

F
m

F
n+"−m

(n¯ 1, 2,…), (4.6c)

for some sufficiently large value of T and continued inward to U{ ¯ 0 at T
!
¯Ω}=#

(where Ω¯Charnock’s constant and =3 c}U{
"
) to determine R

!
. Alternatively, the

integration with respect to T may be stopped at T¯ T
c
¯Ωe=}=# and

dR}dλ¯ T
c
eλ(Q®Q−"R#) (4.7)

integrated from λ¯ 0 (T¯ T
c
) to λ¯®= (T¯ T

!
). The truncation of (4.5a) at n¯ 2

yields

RC®Q(1­"

#
(TQ)−"

dQ

dλ
­"

%
(TQ)−# 9Q0d#Q

dλ#

®
dQ

dλ1®"

# 0dQ

dλ1#:* . (4.8)
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5. Numerical solution

A fast and reliable pair of Fortran routines for computing the Dawson integral has
been written by Wayne Fullerton for the Slatec library. The double precision version
is daws.f, the extended precision (32 digit) one is ddaws.f. (We used the conventional
double precision version for our computations.) These and the several required
subsidiary subroutines are readily available at the Netlib software repository on the
Internet, located at http :}}www.netlib.no}. Derivatives of the Dawson integral were
evaluated through the recurrence relation

dD(ν)

dν
¯ 1®2νD(ν), (5.1)

obviating the need for any explicit numerical differentiation.
A check on the numerical solution of (4.2) was effected by regarding it as an exact

result from which to determine the error of the three- and six-term truncations of (4.5a)
as a function of T. As one would expect, the ratio of the inferred error curves produces
essentially a straight line of slope ®3 when plotted as a function of T on log–log axes.
(While these series solutions can, for large =, be continued somewhat beyond T

c
in the

direction of T
!
, the determination of α and β apparently requires matching with an

expansion pivoted about T¯ T
c
). We found that T¯ 15 was a satisfactory point at

which to commence integration, with larger values producing essentially no change in
the determination of α and β.

An independent check on the numerical results was obtained from the limiting
behaviour of a sequence of (α,β) pairs for δ tending to zero. The limiting values were
extrapolated from a low-order, least-square-polynomial fit near δ¯ 0. In all cases
tested, values were in agreement with the entries given in Conte & Miles (1959) to the
tabulated accuracy. (Note that the curves labelled 0+ in figures 1 and 2 are actually
computed at δ¯ 0.01. On the scale plotted, adjustment by extrapolation to the inviscid
result would make an imperceptible graphical change.)

For solution of the Ricatti equation (4.2), we used an adaptive step-size integrator
based on repeated Richardson extrapolation (Dahlquist & Bjorck 1974). There is no
difficulty in achieving a local absolute error of 10−"# ; the routine automatically
accommodates the change in character of the solution across the critical layer.

The parameters α and β for Ω¯ 0.003 (NT’s value), are plotted in figures 1 and 2
for δ¯ 0, 0.4, 0.8 and 1.2. The results for δ¯ 0 agree with those of Conte & Miles
(1959). NT’s estimate of σ¯ 2.3U{ k¯ 0.94UG

"
(for κ¯ 0.4) implies δ¯ 0.94, which is

bracketed by the present results for δ¯ 0.8 and 1.2.

6. Conclusion

The ratio β(δ)}β(0) implied by the present figure 2 is significantly smaller than the
ratio implied by NT’s figures 1 and 2. In particular, for =$ 0.9 and δ¯ 1.2, the present
ratio is ! 1, in contrast to NT’s 80. Moreover, in contrast to the prediction of the
quasi-laminar model that β is positive-definite for δ¯ 0, the present model predicts
that β(δ) may be negative for sufficiently large = (see Appendix).

We conclude that the wind-to-wave energy transfer predicted by NT’s model may
exceed that predicted by the quasi-laminar model by as much as 20–30% for =# 6, but
may be inferior thereto for =$ 8. We do not understand the order-of-magnitude
increase predicted by NT but suggest that their numerical evaluation of the singular
integrals A and B (their ®ka and ®kb) may be less reliable than our analytical
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reduction in (3.2) and (3.3) above. Finally, we remark that our predicted gust-induced
increase (for moderate c}U

"
) in the energy transfer relative to that predicted by the

quasi-laminar model is commensurate with observation (Komen et al. 1994, p. 72),
whereas there is no (currently accepted) observational support for an order-of-
magnitude increase.

This work was supported in part by the Division of Ocean Sciences of the National
Science Foundation, NSF Grant OCE95-01508 and by the Office of Naval Research
Grant N00014-92-J-1171.

Appendix. Quadratic integral for β

Multiplying (2.9) through by P*, the complex conjugate of P, integrating by parts
over 0! z!¢, and invoking (2.10a, c), we obtain

k#aP$

!
¯®&¢

!

B(rDPr#­k#rPr#) dz. (A 1)

The imaginary part of (A1) yields

β3 Im 0 P
!

kaU{ #
"

1¯&¢

!

B
i
(rDPr#­k#rPr#) dz

k$a#U{ #
"

(A 2a)

¯π"/#(U{
"
}σ)#&¢

!

ν eν#Π(T) dT (T3kz), (A 2b)

where (A2b) follows from (A2a) through (3.3), ν¯ (U{ ®c)}o2σ, and

Π(T)3
rDPr#­k#rPr#

(k#aU{ #
"
)#

. (A 3)

Π(T) is positive-definite, and β is positive if the contributions of the integrand for
T" T

c
(ν" 0) outweigh those for T! T

c
(ν! 0), as proves to be the case for T

c
' 1.

However, Π decays like exp(®2T) for T" T
c
$ 1, in consequence of which β may be

negative if δ" 0. (The limit δ $ 0 is singular.)
If δ' 1, the integrand of (A2b) is concentrated near T¯ T

c
(ν¯ 0), and integration

by parts, together with dν}dT¯ 1}o2δT and δ3σ}U{
"
, yields (after a non-trivial

reduction)

β¯π"/#&¢

ν
!

e−ν# T(TΠ )T dν (A 4a)

Cπ(kz
c
)−"rW(z

c
)}kaU{

"
r# (δ $ 0) (A4b)

in agreement with the quasi-laminar result (M57).
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